# Arquitetura de computadores e sistemas operacionais

Gabriel V C Candido gabriel.candido@ifpr.edu.br

Instituto Federal do Paraná - Pinhais



#### Sumário

Soma binária

Números negativos

**Overflow** 

Circuitos de aritmética

Unidade de lógica e aritmética (ULA)



#### Sumário

Soma binária

Números negativos

Overflow

Circuitos de aritmética

Unidade de lógica e aritmética (ULA)



#### Adição na base 2

| а | +                | b | = | S | $ \mathbb{N} $ |
|---|------------------|---|---|---|----------------|
| 0 | +                | 0 | = | 0 | 0              |
| 0 | +                | 1 | = | 1 | 1              |
| 1 | +                | 0 | = | 1 | 1              |
| 1 | +<br>+<br>+<br>+ | 1 | = | ? | 2              |



#### Adição na base 2

| vem | + | а | + | b | = | vai | S | $\mathbb{N}$ |
|-----|---|---|---|---|---|-----|---|--------------|
| 0   | + | 0 | + | 0 | = | 0   | 0 | 0            |
| 0   | + | 0 | + | 1 | = | 0   | 1 | 1            |
| 0   | + | 1 | + | 0 | = | 0   | 1 | 1            |
| 0   | + | 1 |   | 1 | = | 1   | 0 | 2            |
| 1   | + | 0 | + | 0 | = | 0   | 1 | 1            |
| 1   | + | 0 | + | 1 | = | 1   | 0 | 2            |
| 1   | + | 1 | + | 0 | = | 1   | 0 | 2            |
| 1   | + | 1 | + | 1 | = | 1   | 1 | 3            |



#### Sumário

Soma binária

Números negativos

Overflow

Circuitos de aritmética

Unidade de lógica e aritmética (ULA)



Podemos usar um bit de sinal?



Podemos usar um bit de sinal?

0010 (2)



Podemos usar um bit de sinal?

 $0010 (2) \rightarrow 1010 (-2)$ 



Podemos usar um bit de sinal?

 $0010 (2) \rightarrow 1010 (-2)$ 

0000 (0)



Podemos usar um bit de sinal?

 $0010 (2) \rightarrow 1010 (-2)$ 

 $0000 (0) \rightarrow 1000 (-0)$ 



Podemos usar um bit de sinal?

$$0010 (2) \rightarrow 1010 (-2)$$

$$0000 (0) \rightarrow 1000 (-0)$$

Em decimal: 
$$(+2) + (-2) = 0$$

Podemos usar um bit de sinal?

$$0010 (2) \rightarrow 1010 (-2)$$

$$0000 (0) \rightarrow 1000 (-0)$$

Em decimal: 
$$(+2) + (-2) = 0$$

Mas em binário: 0010 + 1010 = 1100 (-4)



Podemos usar um bit de sinal?

$$0010 (2) \rightarrow 1010 (-2)$$

$$0000 (0) \rightarrow 1000 (-0)$$

Em decimal: 
$$(+2) + (-2) = 0$$

Mas em binário: 0010 + 1010 = 1100 (-4)

O circuito de soma e subtração deve ser diferente



E se tentarmos representar os números negativos de outra forma?



E se tentarmos representar os números negativos de outra forma?

$$-1 + 1 = 0 \rightarrow M + 0000.0001 = 0000.0000$$



E se tentarmos representar os números negativos de outra forma?

$$-1 + 1 = 0 \rightarrow M + 0000.0001 = 0000.0000$$

$$-1 = 1111.1111$$



$$(+A) + (-A) = 0$$
  
 $-A = 0 - A$   
 $-A = (1 - 1) - A$   
 $-A = 1 + (-1 - A)$ 

$$(+A) + (-A) = 0$$
  
 $-A = 0 - A$   
 $-A = (1 - 1) - A$   
 $-A = 1 + (-1 - A)$ 

Vamos olhar para R = (-1 - A)



| -1 |   | 1                     | 1                     | 1                     | 1                     | 1                     | 1                     | 1     | 1     |
|----|---|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------|-------|
| -A | - | a <sub>7</sub>        | <b>a</b> 6            | <b>a</b> 5            | <b>a</b> 4            | <b>a</b> 3            | <b>a</b> <sub>2</sub> | $a_1$ | $a_0$ |
| R  |   | <i>r</i> <sub>7</sub> | <i>r</i> <sub>6</sub> | <i>r</i> <sub>5</sub> | <i>r</i> <sub>4</sub> | <i>r</i> <sub>3</sub> | <i>r</i> <sub>2</sub> | $r_1$ | $r_0$ |



#### Temos dois casos:

- 1. se  $a_0=0$ , então  $r_0=1-0=1=\overline{a_0}$
- 2. se  $a_0 = 1$ , então  $r_0 = 1 1 = 0 = \overline{a_0}$



Temos dois casos:

- 1. se  $a_0=0$ , então  $r_0=1-0=1=\overline{a_0}$
- 2. se  $a_0=1$ , então  $r_0=1-1=0=\overline{a_0}$

Portanto, cada bit de R é o oposto (complemento) do bit correspondente de A, ou seja,  $R = \overline{A}$ 

$$(+A) + (-A) = 0$$
  
 $-A = 0 - A$   
 $-A = (1 - 1) - A$   
 $-A = 1 + (-1 - A)$   
 $-A = 1 + \overline{A}$ 

Essa forma de representar números negativos é chamada *complemento de 2* 



$$0010(2) \rightarrow 1101 + 1 = 1110(-2)$$



$$0010(2) \rightarrow 1101 + 1 = 1110(-2)$$

O bit mais significativo k é multiplicado por  $-2^{k-1}$ 



$$0010(2) \rightarrow 1101 + 1 = 1110(-2)$$

O bit mais significativo k é multiplicado por  $-2^{k-1}$ 

O intervalo representado em k bits é  $[-2^{k-1}, 2^{k-1} - 1]$ 



$$0010(2) \rightarrow 1101 + 1 = 1110(-2)$$

O bit mais significativo k é multiplicado por  $-2^{k-1}$ 

O intervalo representado em k bits é  $[-2^{k-1}, 2^{k-1} - 1]$ 

A soma é igual a subtração! Inclusive para o circuito!



#### Sumário

Soma binária

Números negativos

**Overflow** 

Circuitos de aritmética

Unidade de lógica e aritmética (ULA)



3+5 usando 3 bits, sem considerar números negativos



3+5 usando 3 bits, sem considerar números negativos

$$011 + 101 = 000$$



3+5 usando 3 bits, sem considerar números negativos

011 + 101 = 000 Errado!



3+5 usando 3 bits, sem considerar números negativos

$$011 + 101 = 000$$
 Errado!

Não é possível representar o resultado em apenas 3 bits!



3+5 usando 3 bits, sem considerar números negativos

011 + 101 = 000 Errado!

Não é possível representar o resultado em apenas 3 bits!

E agora considerando números negativos, em complemento de 2?



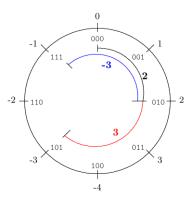


Figura: Representação em complemento de 2 e overflow.

Fonte: RH



#### Sumário

Soma binária

Números negativos

Overflow

Circuitos de aritmética

Unidade de lógica e aritmética (ULA)



#### Circuito somador

| vem | a | b | vai | S | $\mathbb{N}$ |
|-----|---|---|-----|---|--------------|
| 0   | 0 | 0 | 0   | 0 | 0            |
| 0   | 0 | 1 | 0   | 1 | 1            |
| 0   | 1 | 0 | 0   | 1 | 1            |
| 0   | 1 | 1 | 1   | 0 | 2            |
| 1   | 0 | 0 | 0   | 1 | 1            |
| 1   | 0 | 1 | 1   | 0 | 2            |
| 1   | 1 | 0 | 1   | 0 | 2            |
| 1   | 1 | 1 | 1   | 1 | 3            |



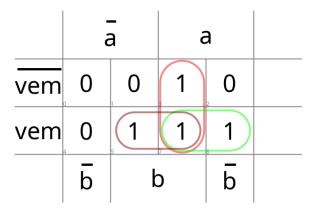


Figura: Mapa de Karnaugh do sinal vai.



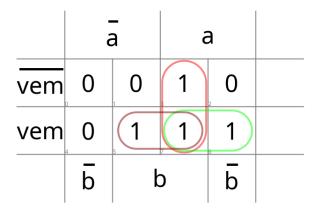


Figura: Mapa de Karnaugh do sinal vai.



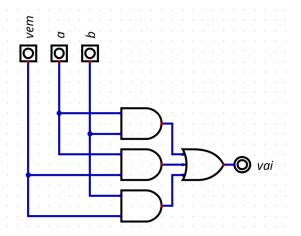


Figura: Circuito do sinal vai do somador de um bit.



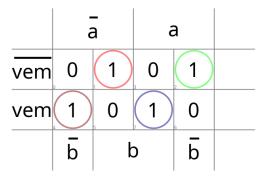


Figura: Mapa de Karnaugh do sinal s.



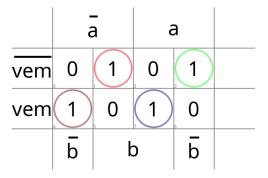


Figura: Mapa de Karnaugh do sinal s.

$$s = (\overline{a} \land b \land \overline{\text{vem}}) \lor (a \land \overline{b} \land \overline{\text{vem}}) \lor (\overline{a} \land \overline{b} \land \text{vem}) \lor (a \land b \land \text{vem})$$



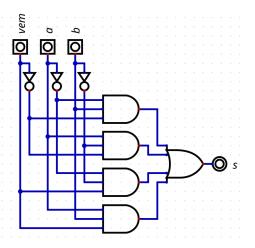


Figura: Circuito do sinal s do somador de um bit.



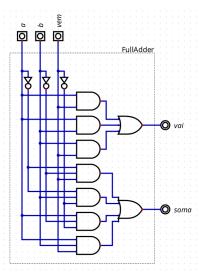


Figura: Circuito do somador de um bit.



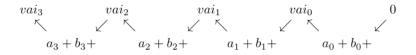


Figura: Adição de dois números de 4 bits. Fonte: RH



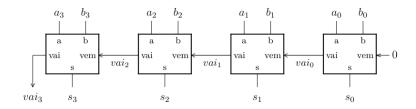


Figura: Circuito somador de 4 bits. Fonte: RH



### Circuito somador e subtrator

Vimos há pouco que a subtração na verdade é uma soma envolvendo um número negativo (representado em complemento de 2)

Portanto, podemos usar o mesmo circuito da soma, com pequenas modificações para calcular o complemento de 2 de um operando antes de iniciar a soma



### Circuito somador e subtrator

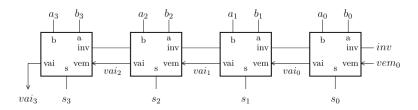


Figura: Circuito que efetua somas e subtrações. Fonte: RH

O sinal *inv* indica que cada bit de B deve ser invertido e o sinal vem<sub>0</sub> é ligado a 1



#### Circuito somador e subtrator

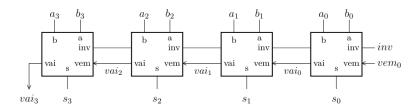


Figura: Circuito que efetua somas e subtrações. Fonte: RH

O sinal *inv* indica que cada bit de B deve ser invertido e o sinal vem<sub>0</sub> é ligado a  $1 \rightarrow \overline{B} + 1$ 



Deslocamentos para esquerda ou para direita em uma tupla de bits são equivalentes a multiplicação ou divisão inteira por potências de 2

| 00110      |   |       | seis           |
|------------|---|-------|----------------|
| 00110 >> 1 | = | 00011 | três           |
| 00110 << 1 | = | 01100 | doze           |
| 00110 >> 2 | = | 00001 | um             |
| 00110 << 2 | = | 11000 | vinte e quatro |

Note que, se usarmos números negativos em complemento de 2, um deslocamento pode causar problemas

$$00110$$
 seis  
 $00110 >> 2 = 00001$  um  
 $00110 << 2 = 11000$  -8 (errado)  
 $11100$  -4  
 $11100 >> 2 = 00111$  sete (errado)  
 $11100 >> 2 = 11111$  -1 (certo)

O deslocamento para direita deve replicar o bit de sinal!



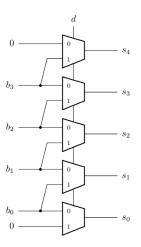


Figura: Deslocamento de uma posição para esquerda. Fonte:

RH



#### Podemos combinar deslocadores

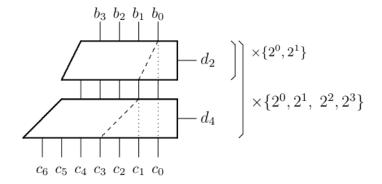


Figura: Deslocamento de 4 bits e três posições. Fonte: RH



#### Sumário

Soma binária

Números negativos

Overflow

Circuitos de aritmética

Unidade de lógica e aritmética (ULA)



# Operações aritméticas

Operações de soma, subtração, multiplicação, divisão, comparação de igualdade, comparação de magnitude são ditas *operações de aritmética* 



# Operações aritméticas

Operações de soma, subtração, multiplicação, divisão, comparação de igualdade, comparação de magnitude são ditas *operações de aritmética* 

$$x = x + 1$$
if  $(a == b) ...$ 

$$r1 = -b/(4 * a) + sqrt(b * b - 4 * a * c);$$



# Operações lógicas

Operações como and, or, xor, not são chamadas operações de lógica



# Operações lógicas

Operações como *and*, *or*, *xor*, *not* são chamadas *operações de lógica* 

$$x = x \mid 1$$



A ULA é um circuito que efetua todas as operações ao mesmo tempo, a depender do comando em C/C++, escolhe uma dentre as saídas  $\rightarrow$  mais fácil e barato para construir o circuito



A ULA é um circuito que efetua todas as operações ao mesmo tempo, a depender do comando em C/C++, escolhe uma dentre as saídas  $\rightarrow$  mais fácil e barato para construir o circuito

Comandos em C/C++ são traduzidos pelo compilador para *linguagem de máquina* que possui uma sequência de *instruções* simples para executar no processador



$$x = x + 1$$
 é traduzido para a instrução ADD  $x$ ,  $x$ , 1

A ULA vai executar todas as instruções, mas vai escolher a saída do circuito somador como resultado final



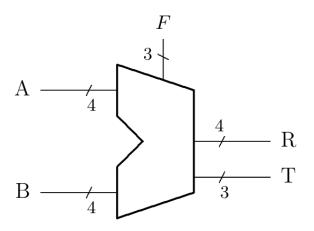


Figura: Unidade de lógica e aritmética. Fonte: RH



Essa ULA possui operandos e um resultado de 4 bits. A ULA recebe um sinal F de 3 bits para indicar qual a operação desejada. Além disso, a ULA gera um sinal T de 3 bits contendo o status da operação (negativo, zero, vai-um)



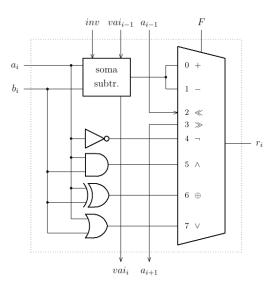


Figura: Fatia de um bit da ULA. Fonte: RH INSTITUTO FEDERAL Campus Pinhais